

EARTH SCIENCES LIBRARY

EXCHANGE MAY 6 1913 DISTRIBUTION OF MINERALS

SCIENCES

= 304

THE JAPANESE EMPIRE AND THE COREAN PENINSULA

METALLIC MINERALS

METALLIC MINERALS

Of the metallic minerals the most important economically is copper; gold comes next, silver third, and iron fourth. Of lead and gine I lende the production is much smaller; while pyrite, manganese ore, antimony, and tin, are still less important. Bismuthe, quicksilver, chromite, tangets nove, and molybdenite, are also produced in the country, but in very small quantities. Nickel, colast, iridium, estimum, platinum, etc. are known to occur, but they have not yet been worked.

The values of the principal metals or metallic minerals produced in 1908, were:

Gold 2715/15 Copper £ 2,367,047 Iron £ 20,1879 In £ 3,391 Manganese Ore £ 15,423.

Silved 2715/15 Copper £ 2,367,047 Iron £ 20,1879 In £ 3,391 Manganese Ore £ 15,423.

Silved 2715/15 Copper £ 2,367,047 Iron £ 2,01879 Iron £ 3,391 Manganese Ore £ 15,423.

Silved 2715/15 Copper £ 2,367,047 Iron £ 2,01879 Iron £ 3,391 Manganese Ore £ 15,423.

Silved 2715/15 Copper £ 2,367,047 Iron £ 2,01879 Iron £ 3,391 Manganese Ore £ 15,423.

Silved 2715/15 Copper £ 2,367,047 Iron £ 2,01879 Iron £ 3,391 Manganese Ore £ 15,423.

Silved 2715/15 Copper £ 2,367,047 Iron £ 2,01879 Iron £ 3,391 Manganese Ore £ 15,423.

Silved 2715/15 Copper £ 2,367,047 Iron £ 2,01879 Iron £ 3,391 Manganese Ore £ 15,423.

Silved 2715/15 Copper £ 2,367,047 Iron £ 2,301879 Iron £ 3,391 Manganese Ore £ 15,423.

Silved 2715/15 Copper £ 2,367,047 Iron £ 3,391 Manganese Ore £ 15,423.

Silved 2715/15 Copper £ 2,367,047 Iron £ 3,391 Manganese Ore £ 15,423.

Silved 2715/15 Copper £ 2,367,047 Iron £ 3,391 Manganese Ore £ 15,423.

Silved 2715/15 Copper £ 2,367,047 Iron £ 3,391 Manganese Ore £ 15,423.

Silved 2715/15 Copper £ 2,367,047 Iron £ 3,391 Manganese Ore £ 15,423.

Silved 2715/15 Copper £ 2,367,047 Iron £ 3,391 Manganese Ore £ 15,423.

Silved 2715/15 Copper £ 2,367,047 Iron £ 3,391 Manganese Ore £ 15,423.

Silved 2715/15 Copper £ 2,367,047 Iron £ 3,391 Manganese Ore £ 15,423.

Silved 2715/15 Copper £ 2,367,047 Manganese Ore £ 15,423.

Silved 2715/15 Copper £ 2,367,047 Manganese Ore £ 15,

much less in amount.

The principal mines are as follows:
Shiribeshi, Prov. of Shiribeshi
Tsubaki, Prov. of Ugo
Ani,
Hisaichi,
Tsubaki, Ts

Sado, Prov. of Sado Hitachi, Prov. of Hitachi Ashio, Prov. of Shimotsuke Kamioka, Prov. of Hida Hiragane,

Ikuno, Prov. of Tajima Yoshioka, Prov. of Bitchū Omori, Prov. of Iwami Kuki, Yamagano, Prov. of Satsuma Benzaiten,

Huno, Prov. of Tajima
Asho, Prov. of Shimotsuke
Asho, Prov. of Hikachi
Asho, Prov. of Shimotsuke
Asho, Prov. of Hikachi
Asho,

a, Prov. of Rikuchū

Mizusawa, "Nagamatsu, Prov. of Uzen Ötori, "Nagamatsu, Prov. of Iwashiro Yukuki, Prov. of Iwashi

Kusakura, Prov. of Echigo Ashio, Prov. of Shimotsuke Kobyaku, » Hitachi, Prov. of Hitachi Takara, Prov. of Kai Kune, Prov. of Tötömi Hiragane, Prov. of Hida

Takane, Prov. of Hida
Ozoya, Prov. of Kaga
Vasenji, "
Omodani, Prov. of Echizen
Sangatani, "
Sangatani, "
Sangatani, "
Omodani, Prov. of Echizen
Kokusei, Prov. of Mimasaka
Kokusei, Prov. of Mimasaka
Hiraiwa, Prov. of Iyo
Hishayama
Hiraiwa, Prov. of Iyo
Sangatani, "
Sangatani, "
Naganobori, Prov. of Nagato
Hiraiwa, Prov. of Nagato
Hiraiwa, Prov. of Iyo
Hiraiwa, Prov. of Hyan
Kokusei, Prov. of Mimasaka
Hiraiwa, Prov. of Iyo
Hiraiwa, Prov. of Hyan
Hiraiwa, Prov. of Iyo
Hiraiwa, Prov. of Hyan
Makimine, "
Kinkwaseki, Taiwa
Makimine, "
Kinkwaseki, Taiwa
Makimine, "
Kinkwaseki, Taiwa
Hilain, Prov. of Hyan
Makimine, "
Kinkwaseki, Taiwa

Lon pyrites:—The production of iron pyrites in 1908 was 33,867 metric tons. The ores are sent first to the manufactories of sulphuric acid or fertilizers, and then to the copper smelters, as they always contain copper. They are chiefly mined in Chūgoku and outer zone of South Japan, their mode of occurrence being the same as that of copper ores, as they are in fact copper ores of a very low grade.

The principal mines are as follows:

Yanabara, Prov. of Mimasaka
Shimoyanahara, ...

Hisaki, Prov. of Mimasaka
Shimoyanahara, ...

Hisaki, Prov. of Bitchū

NON-METALLIC MINERALS.

Of the nineral products of Japan coal is the most important. Petroleum ranks third in value. Of the nonmetallic minerals sulphur comes third. Asphalt and graphite are less important. Other non-metallic minerals, such as phosphate; peat; amber; stone for building, ornaments, and monuments; clays; precious stones; slates, abrasive materials; asbestus; gypsum; limestone; fluorspar; talc; mica; quartz, etc. are known to occur. The values of the three above mentioned non-metallic min rals produced in 1908, were:

Coal......£6,572,466 Petroleum......£674,586 Sulphur......£81,194

Graphite:—The production of graphite is very variable, and was 395,261 lbs. in 1908. It occurs in the gneiss, as in Hida, Etchū, and North Kyöng-syang-dō, or in the Palæozoic and Mesozoic near the contact with granite or quartz-porphyry, and also in igneous rocks, as in Rikuchū, Kaga and Satsuma.

The principal mines are as follows:

Sansō, Prov. of Rikuzen Naoi, Prov. of Hida Chinodani, Prov. of Etchū Yoneyama, Prov. of Satsuma Coal:—The output of coal in 1908 was 14,979,687 metric tons. It is known to occur in the Mesozoic and the Tertiary, anthracite belonging in the former and brown coal in the latter. The anthracites in the Jurassic of Nagato, as in the Omine coal field, and in the Cretaceous of Amakusa in Higo, are well known; while those in the Tertiary, of which the coal fields of Kyūshū and Hokkaidō are the most extensive and valuable. The coal fields, extending over Iwaki and Hitachi, rank next but the coal is much inferior in quality. The coal fields in southern Nagato and in northern Taiwan, are of much less extent and the coal is inferior in quality. In south Karafuto or Saghalien the coal-bearing Tertiary is of wide extent, and recently some collieries have been opened.

The principal collieries are as follows:

Yūbari, Prov. of Ishkari Shin-nyū, Prov. of Chikuzen Shakanoo, "Shakanoo, "S

Shin-yūbari, Sorachi, Horonai, Kanada, Hōkoku, Shakanoo, Meiji, Mitsui-hondō, Hökoku,
Ötö,
Akaike,
Miyazaki-höshū,
Miike, Prov. of Chikugo
Yoshinotani, Prov. of Hizen.
Öchi,
Akasakaguchi,
Tukashima, Onoda, Prov. of Iwaki Iriyama, Uchigō, Gotoku-kaigun," Futase, Namazuda, Yoshima, ,, Miyoshi, Prov. of Chikuzen. Onoura, ,, Yoshio,
Mameda.
Mitsui-yamano,,,

Onoura, Otsuji, Shimoyamada, Takashima, Takashima, Shimoyamada, Takashima, Ta

The principal oil fields are as follows:

Nitsu, Prov. of Echigo
Higashiyama, ,,
Nishiyama, ,,
Deposits of sulpbur are found very widely dist:

Ushirodani, "Sulphur:—Deposits of sulphur are found very widely distributed in the volcanic regions of Japan and mostly inside craters. The sulphur occurs mixed with ejected materials. Beds of sulphur flow mixed with mud are found.

The principal mines are as follows:

Kobui, Prov. of Oshima

Kumadomari, "Uguisuzawa Prov. of Duri

Uguisuzawa Prov. of Divisional Two prov. of Oshimo, "Uguisuzawa Prov. of Oshimo, "U

Oshino, Shikabe,

Iwaonupuri, Prov. of Iburi Uguisuzawa, Prov. of Rikuchū Numajiri, Prov. of Iwashiro Kujūsan, Prov. of Bungo

ルヘシ、鑛床ハ交代鑛床ニシテ古生代石灰岩中ニ胚胎シ不規則ナル塊狀ラナス 朝鮮ニ於テハ甲山鑛山ノ稼業セルアルノミニシテ銅ノ産出題ハーケ年 四五十萬斤ナ

位セリ、砂鐵ヲ除ケハ鐵礦床ハ主ニ接觸礦床ナリ、釜石ノ磁鐵礦床ハ古生代 石灰岩 接觸部ニアり、中國山地ノ砂鐵ハ花崗岩、閃絲岩及花崗斑岩ノ雰爛ニョリ生成セラ 協岩トノ接属帶ニ、陸中ノ仙人織山ノ雲母鉞織床ハ變質片岩及石灰岩ト 花崗岩トノ ト花崗岩又へ閃綠岩トノ接觸帶ニ、陸中ノ人首織山ノ磁鐵鑛床ハ 古生代粘板岩ト花 其大部ハ陸中ノ釜石鑛山ノ産出ニ係り、中國山地ノ砂鐡ヨリ製錬シタルモノ 第二ニ 五 鐵 明治四十一年中ニ於ケル鐵ノ 産出額 ハ 千二百十萬五千五百二十六貫ナリ、 及認鐵鐵ハ之ヲ採掘シテ製鐵所ニ輸送セリ、其總額明治四十一年ニ於テ九百十七萬 レタルモノナリ、此外贈振虻田ノ沼鐵鏞、美作ノ柵原ノ褐鐵鎖、長門及豐前ノ 磁鐵織 三千八百九十一貫ナリ

黃海道二於テ鐵鐵ヲ採掘ス、其產額ハ明治四十一年二於テ 略十萬噸二達セリ、鐵鎖 中ニアリテ赤鐵鑛ョリ成ル 朝鮮ニ於テハ平安道价川ニ諸鐵鑛ヲ産ス、其鑛床ハ古生層中ニ 層狀ヲナセリ、近時 ハ主ニ褐鐵礦ニシテ粘土中ニ大小種々ノ織珠ヲ成シテ存在ス、安岳ノ織床ハ 中生層

産額遙ニ劣り織床ハ古生層中ノ磯脈ナリ、其他重要ナラサル織山ニアリテハ 主ニ紀少ノ石英ヲ混シ繍脈ヲナシテ結晶片岩並ニ白垩紀層ニ胚胎ス、周飭ノ 廃野織山ハ其 州ヨリ四國ヲ通シ肥後三互レル結晶片岩及古生層中ノ織脈ヲ稼行ス 斤ニシテ、伊豫ノ市ノ川鑛山約其三分ノニョ占ム、同山ノ鑛床ハ 郷安鑛ヨリ成り多 大安質母尼 明治四十一年中二於ケル安質母尼ノ産出額ハ 三十三萬三百三十二

及美濃ノ高山ニテ採取セラル、後者ノ鎮床ハ花樹岩中ノ鎮脈若クハ鐵染鎖床ノ雲網 ノ鑛床ハ中生代砂岩中ニ胚胎セル鑛脈ニシテ網粒ノ鍋石ヨリ成ル、砂鍋ハ主ニ 鍋山 分ノ三ハ薩摩ノ谿山錫山ノ産出ニ係り約五分ノ一ハ砂錫ョり 製出セラレタリ、錫山 シテ沈積セルモノナルカ如シ 明治四十一年中二於ケル鍋ノ産出額ハ四萬二千八百八十五斤ニシテ 其約四

粘土中ニ胚胎シ、古生層中ニアルモノハ多ク角岩其母岩ラナス テハ層狀ラ成シテ古生層中ニ存ス、第三紀層中ニアルモノハ多ク凝灰岩及ハ凝灰質 主要ナル諸権鑛山ハ左ノ如シ アハ第三紀層中二存シ、丹波並二志摩及伊勢ョリ四國ヲ通シ九州二 亙レル一帶二於 四斤ナリ、端俺鑛ハ殆シト古生層及第三紀層ニノ=胚胎シ一般ニ 北海道及陸奥ニ於 八 満位鎌 明治四十一年中ニ於ケル消俸織ノ産出額ハ 千八百五十五萬五百七十

千走 (同) 南股美利河(後志國) 岩崎 (陸奥國

山トシテ稼行セラレ神岡鑛山ハ銀鉛山ナリ、唐月屋ノ鱵床ハ石英粗面岩ニ 接觸セル ノ唐月屋、飛驒ノ神間及對島ノ佐須ノ三鑛山ナリ、唐月屋及佐須ノ兩鑛山ハ 永ク銀 スルニ至リシハ近年ノコトニ屬シ、其産額未タ大ナラス、主要ナル 亞鉛織山ハ羽前 り、亞鉛鐵、廣ク銀山、鉛山及銅山ニ分布セルモ、其之ヲ採掘攪織シテ 海外ニ輸出 明治四十一年中二於ケル亞鉛織ノ産出額ハ一萬八千二百九十九噸ナ

主要ナル炭山ハ左ノ如シ

(石狩國)

新夕張 夕張

同同 (石狩國) 狀ヲ成シテ存シ閃亞鉛鑛ヨリ成リ少量ノ鎭石ヲ有ス 第三紀層中ニ胚胎スル黒物ニシテ、佐須ノ鑛床ハ石英斑岩ニ接觸セル 中生層中ニ脈

其主要ナル鑛山ハ左ノ如シ 場合ト全ク同シ、即チ本鑛石ハ品位極メテ劣等ナル銅鑛ト謂フラ得ヘシ セラル、而シテ主ニ中國及南日本ノ外帶ニ於テ採掘セラレ、其賦存ノ狀態ハ銅鍍ノ り、織石ハ銅ヲ含有セルヲ以テ硫酸製造ニ供セラレタル後、更ニ製銅所ニ於テ 製館 十 黄鐵鐵 明治四十一年中ニ於ケル遊鐵線ノ産出 額ハ 九百三萬千百五十三貫土

下楊原 (美作國) 人木 (備中國) (紀伊國

非金屬鑛物

織物二八燐礦、泥炭、琥珀、建築石材、装飾石材、碑碣用材、粘土、賓石、石板石、磨磐材、 本邦二於ケル鐵産物中最モ重要ナルモノラ石炭トナス、非金團鐵物二在リテハ石油 石綿、石膏、石灰岩、盛石、滑石、雲母、石英等アリ 之二亞キ硫黃第三位ニアリ、黒鉛、土瀝青ハ甚タ重要ナラス、而シテ其他 ノ非金属

明治四十一年ノ産出ニ保ル非金屬鑛物中最モ主要ナル石炭、石油及 硫黄ノ價額ハ左

二揚クル如シ

石炭 六四、一六六、九八四 六、五八五、九八四 硫黃 七九二、六九一四

層若クハ中生層中又ハ火成岩中ニ之ラ見ル 中二胚胎シ、又ハ陸中、加賀及薩摩三於ケル如ク花崗岩又ハ石英斑岩二接セル古生 其産額ニハ年の著シキ差異アリ、黒鉛ハ飛驒、越中及慶尙北道ニ於ケル如ク片脈岩 一點的 明治四十一年中二於ケル黑鉛ノ産出額ハ二十九萬五千八百十三斤ニシテ

主要ナル黒鉛山ハ左ノ如シ

直井 (陸前國) 千野谷 (越中國) (飛驒國) 一米山 (薩摩國)

廟ナリ、石炭ハ中生層及第三紀層中二介在シ、前者二在ルモノハ主二 無煙炭ニ、後 額甚タ少ナシ、重要ナル炭田ハ第三紀暦地ニアリ、就中其賦存最モ廣ク且ツ 炭質良 紀層ニ存スル無煙炭ハ稍著シク、備中ノ三疊紀層及阿波ノ 白垩紀層ニ在ルモノハ産 者二在ルモノハ褐炭ニ屬ス、大嶺炭田ラ有スル長門ノ珠羅紀層及肥後ノ天草ノ白墨 好ナルラ九州及北海道ノ炭田トナス、常磐炭田ハ之ニ次クモ炭 質透ニ 之ニ劣レリ、 長門南部及臺灣北部ノ炭田ハ賦存狹ク且ッ炭質劣等ナリ、而シテ邦領樺太ニハ 廣き 一石炭 明治四十一年中二於ケル石炭ノ產出額ハ千四百九十七萬九千六百八十七

> 朝鮮ニ於テハ平安道平壤附近ノ中生層ニ介在セル無煙炭ヲ重要+ル モノトス、 御德海軍(同 二類(同 明目治尾 新入 大ノ浦 (同同 忠殿 下山田 同同 同同 同同 金田 三井田川(豐前國 同 (同 (筑前國 宮崎豐州(同 高相三島知池 (筑後國) (雙前國)

額ハーケ年十萬噸內外ナルヘシ、東海岸ニ於ケル第三紀ノ石炭ハ重要ナラス 紀層中二介在シ、明治四十一年中二八四十六萬五千七百四十順ノ産出額アリタリ 南滿洲ニ於テハ賽馬集ニ珠羅紀ノ無煙炭アリ、石炭紀夾炭層中ノ無煙炭ハ煙臺ニ於 テ採掘セラル、最モ重要ナル褐炭層ハ撫順炭坑ニ於テ採掘セラル、モノニシテ 第三

三 石油 明治四十一年中二於ケル石油ノ産出額ハ百八十一萬九千百六十四石ニシ 層ハ砂岩又ハ擬灰質砂岩ナリトス テ就中其九割九分ハ越後各油田ノ産出ニ係しり、石油ハ第三紀層中ニ胚胎シ、含油

主要ナル油田ハ左ノ如シ

(同 (越後國) 頭城{頸城 (同)

西山 () () () () () () () ()

山泥ト混ス、又硫黃流ラ形成セルモノアリ尚硫黃ハ豐後ノ九重山二於ケル如ク硫流 四 硫黃 明治四十一年中二於分止硫黃ノ產出額八五千八百九十八萬四百九十八斤 孔ノ噴出五斯ヨリ採取セラル、モノアリ ナリ、硫黃鑛床ハ火山地方ニ廣ク賦存シ殊ニ噴火口内ニ於テ普通火山噴出物殊ニ火

主要ナル硫黄山ハ左ノ如シ

古武野 (演島國) 沼意岩尻泽雄登 (陸中國) (赠振國 硫黃島

九重山 (岩代國)

明治四十三年六月

地 質 調 查 所

日本群島及韓半島ノ镰産

二足ラス、「ニッケル」「コバルト」「イリヂウム」「オスミウム」白金等ハ之ヲ産スレ 劣しり、此他格智謨鐵鑛、蒼鉛、水銀、輝水鉛鑛及重石織ラ 産スレトモ其産額言フ トモ未タ採掘セラレス 四位ニ在り、鉛及亞鉛鑛八產額少ナク、黃鐵鑛、滿俺鑛、安質母尼及錫ハ產額更ニ 本邦二産スル金屬中最モ重要ナルモノハ鍋ニシテ金 之ニ亞キ、銀ハ第三位、鐵ハ第

明台四十一年中二産出シタル金屬及金屬護物ノ質質ハ左ノ如シ

									H
タングステ	水銀	格魯謨鐵鑄	質母	化	鉛	銀	銅一		明治以一一者を二直はミニュ会月之会対論中、作者ノフニガミ
ン織	1		五三、	一七一	四〇五、	1	110,011,		The same of
四九〇	七四二	六二四	五七八	四五九	11111	、六八五	一一、八四九	F	一大学は
	水	蒼	錫	满	亞	200			日月 一月 一月
	鉛纖	鉛		修績	鉛鑛				个我
一 かかかれ	一、一九	七、九八一	三五、〇七十	一五〇、五七〇	三〇八、七七	一、九七〇、九四〇	六、九八七、五二	100	ファラミ
	11	1	1	0	IL	0	KA	PI	

テ主ニ北海道ニ於テ採取セラレタリ 出セラレタルモノハ更ニ少額ニシテ二三十貫ヲ出テサルヘシ、砂金ハ六十餘貫ニシ ラレタル金ハ百五十貫二充タサルヘク、日立鑛山等ノ銅鑛、神岡鑛山等ノ銀鑛ョり抽 取セラレ銅鐵時ニハ鉛鑛ニ隨伴ス、而シテ 小坂、加納鑛山等ノ所謂黑物ヨリ抽出セ 以上ヲ産出シタル鑛山二十九アリ、金ハ主トシテ金銀ヲ含有スル石英ノ 鑛石ヨリ採 明治四十一年中二於ケル金ノ産出額ハ千四百賞七一ニニシテ 同年中其五賞

ルコトアリ、生野及大森鑛山ハ多量ノ銅ヲ産出シ、院内、牛田、生野、大森等ノ諸鑛山 ル、モノアリ、又鷲ノ巢、大谷等ノ鑛山ノ如ク銅鑛ノ稼行ニ 堪フへキモノラ含有ス 胚胎シ、時二中生層ノ層理面ニ胚胎シテ鹿折鑛山ノ鑛床ノ如ク層狀鑛脈ト思惟セラ ノ北部二散在シテ産出ス、鑛床ハ主ニ第三紀層、石英粗面岩及安山岩ニ 鑛脈ヲ成シテ 產之、此他牛田、佐渡、倉谷、金平、宮來、生野、大森鑛山等日本ノ內帶及 伊豆並ニ臺灣 金銀ヲ含有スル石英ノ鑛石ハ主トシテ 薩摩、豐後、筑後、陸前、陸中、後志、贈振ニ ハ水ク銀山トシテ知ラレタルモノニシテ其鑛石ニハ硫安銀鑛及輝銀鑛ヲ隨伴ス、此

他交代鑛床ニ屬スル鑛床アレトモ重要ナラス

釜石	鷲ノ巣	小坂	院內	後志	幌別	100
(同)、	(同)	(陸中國)	(羽後國)	(後志國)	(贈振國)	1500
當來	佐渡	日立	华田	加納	鹿折	
(能登國)	(佐渡國)	(常陸國)	(同)	(岩代國)	(陸前國)	
鯛生野	矢野	大森	生野	金平	倉谷	
(雙後國)	(筑後國)	(石見國)	(但馬國)	(同)	(加賀國)	

其他著シキ金山ニハ平安道ノ慈母山、忠清道ノ稷山、全羅道ノ金溝金山アリ 生層、火成岩中ニ存スルコトアリ、織床ハ石英脈ラナシ、時二多量ノ硫化鑛物ラ含 後者ヲ主要ナルモノトス、金鑛ハ多々花崗岩者クハ片麻岩二胚胎スルモ亦古生層、中 大ナルモノニシテ其産額年二三百貫二上リ片麻岩者クハ花崗岩中ノ 石英脈ラ稼行ス 有ス然ルニ殷山及遂安鑛山ノ鑛床ハ古生代石灰岩中ニ胚胎シ、塗安ノ鑛床ハ 花崗岩 トノ接觸部ニ近ク存在ス、而シテ兩者共ニ交代鑛床ニ屬ス、雲山鑛山ハ金山中最モ 係ルモノト河床、洪泊地及舊河床即チ河成增段ノ砂礫中二賦存スルモノトアリ、就中 朝鮮二於ケル金ノ産出額ハ明ナラサレトモ明治四十一年中ニハ七百貫内外ニシテ其 一牛ハ砂金ョリ採取セラレタリ、砂金地ハ京機道以外ノ各道二散在シ、原地沈積ニ 山ケ野

取セラレ、鉛織ヨリ製出セラレタルモノハ其量多カラス ョり抽出セラレタルモノニシテ其他ハ主ニ銅纜及金銀ヲ含有スル石英ノ織石ヨリ採 中百貫以上ヲ産出セル織山二十七アリ、而シテ同年中ノ産出額中 約三分ノ二ハ黒物 一銀 明治四十一年中二於ケル銀ノ産出額ハ 三萬三千百十八貫五四六ニシテ同年

田(同)面	納(岩代國)一倉	去澤 (陸中國) 畑	坂(同)一高	(同) 平	三市(同)一神	仁 (同) 足	(羽後國) 日	志 (後志國) 佐	主要ナル銀山ヲ擧クレハ左ノ
谷(越前	谷(加	佐(美濃	根(同	金(同)	简 (報	尾(下野	立(数	渡 (佐渡	加多
		瓜石 (財天(山ヶ野(薩摩國)	喜 (同	森(岡(備	野(但	

岩ニ胚胎シ、方鉛鑛ラ主トシ鑓石ハ方解石及石英ョリ成ル、以上四鑛山ハ 其主要ナ 主ニ方鉛鑛ョリ成り、鑓石ハ菱滴俺鑛ナリ、石見ノ久喜鑛山ニ於ケル 鑛脈ハ石英斑 ヨり成ル、陸中ノ小坂鑛山ニ於ア黑物ヨリ製出セラレタル鉛ハ第二位ニアリ、加賀 スル片麻岩ニ胚胎シ、鑛石ハ主ニ方鉛鑛、黃鐵鑛及閃亞鉛鑛、鷄石ハ輝石、綠簾石等 分ノ三ハ飛驒ノ神岡鑛山ノ産出ニ係レリ、同山ノ鑛脈ハ片麻岩、時ニ石英斑岩ニ 接 三 鉛 明治四十一年中二於ケル鉛ノ産出額ハ四百八十五萬五百一斤ニシテ、內四 ノ倉谷鑛山ニ於ケル鑛脈ハ石英粗面岩ニ貫通セラレタル第三紀凝灰岩中ニ 胚胎シ、

片岩系ョリ第三系ニ至ル各岩層及火成岩中ニ胚胎ス、鹽基性鑛石ハ主ニ 黄銅鑛、贳 鑛石及黑物ヨリ製出セラル、銅鱵ハ金屬鑛物中最モ廣ク 分布セルモノニシテ、結晶 ニシテ同年中其十五萬斤以上ヲ産出セシ鑛山三十六アリ銅ハ主ニ 酸性鑛石、鷄基性 四 銅 明治四十一年中二於ケル銅ノ産出額ハ 六千九百五十三萬七千八百六十五斤

> 黃銅纖ニシテ磁硫鐵纖、黃鐵纖ヲ伴フ、黑物ハ主ニ閃亞鉛纖、方鉛纖及重晶石ノ 密 ノ接觸部ニ近ク古生層中ニ胚胎ス、鑓石ハ石英ニシテ 應接觸鑛物ラ隨伴シ、鑛石ハ 山二於ケル如々石英斑岩及玢岩ト、笹ケ谷鑛山二於ケル如ク石英粗面岩ト古生層ト 中ニ鑛脈トシテ胚胎シ、笹ケ谷鑛山ノ鑛床ノ如キハ接觸鑛床ニ屬ス、主要ナル 鑛床 國ニ於テハ鑛床ハ生野、大森鑛山等ヲ除ケハ、火成岩ヲ伴ヘル古生層並ニ 第三紀層 如キハ層狀鑛脈ト思惟セラル、鑛石ハ黃銅鑛ニシテ黃鐵鑛及閃亞鉛鑛ラ隨伴ス、中 中央日本ニ於テハ鑛床ハ古生層中ニ在リテ普通層面ニ胚胎シ平金、高根等ノ鑛床ノ 寺等諸鑛山ノ鑛床ハ其著シキモノナリ、獨り面谷鑛山ノ鑛床ハ中生層及 石英斑岩中 シ石英粗面岩、石英安山岩、粒狀安山岩及安山岩ニ關係ヲ有ス、其成因ニ 関シテハ交 納鑛山等東北地方ノ内帯ニ限ラレ、鑛床ハ不規則ナル大塊ヲナシテ第三紀層ニ 胚胎 雑セルモノニシテ黃銅鑛及黃鐵鑛ヲ混シ金銀ヲ含有ス、其分布ハ殆ント小坂、椿、加 ハ火成岩ト接觸セル古生層中ニアリ、即チ帶江鑛山ニ於ケル如ク 花崗岩ト、吉崗鑛 シテ常ニ黃鐵鑛、閃亞鉛鑛ラ伴フ、足尾銅山ノ鑛脈ハ主トシケ石英粗面岩中ニアリ、 ルモ唯不老倉鑛山ノ粘土脈ノ如ク石英ノ鍋石ヲ有セサルモノアリ、鑛石ハ黃銅鑛ニ 二、水澤鑛山ノ鑛床ハ石英粗面岩ニ接觸セル花崗岩中ニ胚胎ス、鑓石ハ常ニ 石英ナ ニ胚胎シ此等ノ接觸部ニ近ク存在ス、尾去澤、阿仁、日三市、荒川、永松、尾小屋、遊点 賀等ニ於ケル鑛床ハ大部分鑛脈ニシテ第三紀層、石英粗面岩、粒狀安山岩及安山岩中 國二廣ク分布シ、其賦存ノ狀態ハ各地方ニョリ差異アリ、即チ東北地方唯二越前、加 佐ノ中生層二般見セラル、モ重要ナラス、酸性鑛石ハ日本ノ内帶殊二東北地方及中 **槇峰等著名ナル織山ノ之ニ屬スルアリ、又鹽基性織石ハ中生層、殊ニ大和、紀伊及土** ノナリ、古生層中ノモノハ結晶片岩中ノモノニ比シ主要ナラサレトモ尚岩屋、日平、 二於テ製錬セラル、日立鑛山ノ鑛床ハ北日本二於テ結晶片岩中二胚胎セル 唯一ノモ ラル、其主要ナルモノヲ結晶片岩、殊ニ四國ノ結晶片岩中ニアルモノトシ 別子鍋山 賦存ス、結晶片岩及古生層中ニ存スル鑛床ハ普通層面ニ胚胎シテ織層トシテ思惟を 代鑛床ニ屬スヘシト云フ、黒物ヨリハ金、銀、銅、鉛ヲ製錬ス 鍛鑛ノ密雜セルモノヨリ成り殆ント全ク日本ノ外帶、殊二南日本ノ外帶二限ラレテ ハ其最大ナルモノナリ、久根銅山ハ中央日本ニアリテ 鑛石ハ主ニ院内、日立鑛山等

八加大永力革納島松澤	水山不尾小院 器縣老去坂內 鴇倉澤	排 所 日 阿 男 市 一 川 三 仁 ラ
(智代國)	前向高には同じ、一個では、一個では、一個では、一個では、一個では、一個では、一個では、一個では	I
江盛野谷易	在尾高平久寶 以小根金根 产屋	日小足草 立百尾倉
(進前國)	(一)	陸野後
金旗日顯非瓜峰平 亩	手千別金平長 以原子山磐登	一 従大寶吉 か森滿岡 谷 山
(電) (日) (電) (電) (電) (電) (電) (電) (電) (電) (電) (電		見雲中

14 DAY USE RETURN TO DESK FROM WHICH BORROWED

EARTH SCIENCES LIBRARY

This book is due on the last date stamped below, or on the date to which renewed.

Renewed books are subject to immediate recall.

THE RESERVE OF THE PARTY OF THE	
LD 21-40m-5,'65 (F4308s10)476	General Library University of California

